Los materiales compuestos, como los plásticos reforzados con fibra de carbono, son materiales muy versátiles y eficientes que impulsan la innovación en varios mercados, desde el sector aeroespacial a la sanidad. Obtienen mejores resultados que materiales como el acero, aluminio, la madera o el plástico y permiten la fabricación de productos ligeros de alto rendimiento.
En esta guía, aprenderás las bases de la fabricación de piezas de fibra de carbono, además de los diferentes métodos de fabricación, y cómo puedes usar una impresora 3D para reducir costes y ahorrar tiempo.
Solicita una pieza de muestra gratuita del Nylon 11 CF Powder
Experimenta la calidad de Formlabs de primera mano. Enviaremos una pieza de muestra gratuita a tu lugar de trabajo.
¿Qué son los materiales compuestos?
Un material compuesto es una combinación de dos o más partes constituyentes con características que difieren de los componentes individuales. Las propiedades de ingeniería suelen mejorar, como la fuerza, eficiencia o durabilidad. Los compuestos están hechos de
fibras o partículas reforzadas y unidas por una matriz (polímero, metal o cerámica).Las fibras reforzadas de polímero (FRP) dominan el mercado y han alimentado el crecimiento de nuevas aplicaciones en varias industrias. Entre ellos, la fibra de carbono es un compuesto muy utilizado, especialmente para la fabricación de aviones, coches de carreras y bicicletas, ya que es tres veces más resistente y firme que el aluminio, pero un 40 % más ligera. Esta formado de fibra de carbono reforzada enlazada con resina epoxy.
Las fibras pueden tejerse unidireccionalmente y alinearse estratégicamente para crear resistencia relativa a un vector. Las fibras tejidas de forma cruzada pueden usarse para crear fuerza en múltiples vectores y también son responsables del aspecto acolchado de las piezas compuestas. Es común que las piezas se produzcan con una combinación de ambos métodos. Hay varios tipos de fibras disponibles que incluyen:
| Fibra de vidrio | Fibra de carbono | Fibra arámida (kevlar) |
|---|---|---|
| La fibra más popular Ligera, resistencia moderada a la tracción y a la compresión Coste bajo y fácil de trabajar | La relación de resistencia y rigidez por peso más alta de la industria (resistencia final a la tracción, compresión y flexión) Más cara que otras fibras | Resistencia más alta a impactos y a la abrasión que la fibra de carbono Baja fuerza de compresión Difícil de cortar o mecanizar |
La resina se usa para unir estas fibras y crear un compuesto rígido. Mientras que se pueden usar cientos de tipos de resinas, aquí están las más populares:
| Resina | Ventajas | Inconvenientes | Curado |
|---|---|---|---|
| Resina epoxi | Fuerza máxima más alta Peso más ligero Vida útil más larga | Más cara Sensible a las proporciones de la mezcla y a las variaciones de temperatura | Usa un endurecedor específico (sistema de dos partes) Algunos epoxis requieren calor |
| Poliéster | Fácil de usar (más popular) resitente a los rayos UV Coste más bajo | Baja fuerza y resistencia a la corrosión | Se cura con un catalizador (MEKP) |
| Vynil Ester | Mezcla el rendimiento del epoxy y el coste del poliéster Mejor resistencia a la corrosión, la temperatura y al alargamiento | Fuerza más baja que el epoxy y coste más alto que el poliéster Vida útil limitada | Se cura con un catalizador (MEKP) |
Reserva una consulta gratuita
Ponte en contacto con nuestros expertos en impresión 3D para tener una consulta personalizada y encontrar la solución adecuada para tu negocio, recibir un análisis de rentabilidad de la inversión, realizar impresiones de prueba y mucho más.
Tres métodos para crear piezas de fibra de carbono
Fabricar polímeros reforzados con fibras, como las piezas de fibra de carbono es un proceso habilidoso y de trabajo intensive que se usa tanto en la producción única y por lotes. Los tiempos de los ciclos varían desde una hora a 150 horas según el tamaño y complejidad de la pieza. Lo típico es que en la fabricación con polímeros reforzados con fibras, las fibras rectas y continuas se unen a la matriz para formar capas individuales que se laminan capa por capa en la pieza final.
Las propiedades de los compuestos vienen inducidas tanto por los materiales como por el proceso de laminación: la forma en que las fibras se incorporan influencia mucho en el rendimiento de la pieza. A las resinas termoendurecibles se les da forma juntas con el refuerzo de una herramienta o molde para formar un producto robusto. Hay muchas técnicas de laminación disponibles, que pueden dividirse en tres principales:
1. Colocación en húmedo
En la colocación en húmedo, la fibra se corta y se coloca en el molde. A continuación, se aplica la resina con un cepillo, rodillo o pistola pulverizadora. Este método requiere es el que requiere más habilidad para crear piezas de alta calidad pero también es el proceso de trabajo menos caro con los requisitos más bajos para empezar a hacer tu mismo piezas de fibra de carbono. Si eres principiante en la fabricación de piezas de fibra de carbono y aún no cuentas con el equipo adecuado, te recomendamos que empieces con la laminación en húmedo a mano.
Mira el vídeo para ver como el proceso de colocación en húmedo funciona para laminar las piezas de fibra de carbono.
2. Laminación preimpregnada
Con la laminación preimpregnada, la resina se infunde en la fibra. Las láminas preimpregnadas se guardan en un ambiente frío para inhibir la curación. A continuación, las capas se curan en el molde bajo calor y presión en un autoclave. Se trata de un proceso más preciso y repetible porque se controla la cantidad de resina, pero también es la técnica más cara que suele utilizarse en aplicaciones de alto rendimiento.
3. Moldeo por transferencia de resina (RTM)
Con el moldeo RTM, la fibra seca se inserta en un molde de dos partes. El molde se cierra con abrazaderas antes de forzar la resina en la cavidad a alta presión. Normalmente, este proceso es automático y se usa para la fabricación de alto volumen.
Creación de moldes impresos en 3D para la fabricación de piezas de fibras de carbono
Ya que la calidad del molde impacta la calidad de la parte final, crear las herramientas es un aspecto crítico de la fabricación FRP. La mayoría de los moldes se producen a partir de cera, espuma, madera, plástico o metal mediante el mecanizado CNC o métodos artesanales. Mientras que las técnicas manuales requieren mucha mano de obra, el mecanizado CNC sigue siendo un flujo de trabajo complejo y lento (especialmente para geometrías intrincadas) y la subcontratación suele tener un coste elevado, con un largo plazo de entrega. Ambas opciones requieren trabajadores cualificados y ofrecen poca flexibilidad en las iteraciones de diseños y los ajustes de moldes.
La fabricación aditiva ofrece una solución para producir rápidamente moldes y patrones a bajo coste para fabricar piezas de fibra de carbono. El uso de utillajes poliméricos en el proceso de fabricación no deja de crecer. Reemplazar las herramientas de metal con piezas de plástico impresas in situ es una forma rentable y potente de reducir el tiempo de producción al mismo tiempo que se expande la flexibilidad de los diseños. Los ingenieros ya trabajan con piezas impresas en 3D en resina polimérica para la fabricación de dispositivos de sujeción y fijación como forma de apoyo a métodos como el enrollado de filamentos o la colocación automática de fibras. Asimismo, se emplean moldes y troqueles impresos en tiradas cortas en el moldeo por inyección, el termoformado o el conformado de chapa para entregar remesas de bajo volumen.
La impresión 3D de escritorio in situ no requiere mucho equipamiento y reduce la complejidad del proceso de trabajo. Las impresoras de escritorio profesionales como la Form 3 son asequibles y fáciles de integrar en los procesos de trabajo y pueden expandirse rápidamente a medida que crezca la demanda. Fabricar herramientas y moldes grandes también es posible con impresoras 3D de gran formato como la Form 3L.
La tecnología de impresión 3D por estereolitografía (SLA) crea piezas con un acabado de la superficie muy liso, lo que es esencial para los moldes de fibra de carbono. Permite la creación de geometrías complejas con una precisión alta. Además, el catálogo de resinas de Formlabs tiene materiales de ingeniería con propiedades mecánicas y termales que encajan bien con la fabricación de moldes y patrones.
Los moldes impresos en 3D para la fabricación de piezas de fibra de carbono pueden reducir los costes y los plazos de producción.
Para la producción a una escala más pequeña, los ingenieros pueden imprimir el molde directamente a bajo coste y en solo unas horas sin tener que tallarlo a mano o lidiar con equipo de CNC; software de CAM, configuración de la máquina, portapiezas, herramientas y evacuación de virutas. Los plazos de trabajo y la mano de obra para la fabricación del molde se reducen drásticamente, lo cual permite una iteración de diseño y personalización de piezas rápida. Incluso pueden obtener moldes de formas complicadas que serían difíciles de fabricar de forma tradicional.
El equipo Formula Student en la TU Berlín (FaSTTUBe) fabricó una docena de piezas de fibra de carbono para coches de carreras. Los ingenieros del equipo laminan a mano en un molde impreso directamente con la Tough 1500 Resin de Formlabs. Esta resina se caracteriza por un módulo de tracción de 1,5 GPa y un alargamiento de rotura de un 51 %. No solo es fuerte y sirve de apoyo durante la laminación, sino que también es lo suficientemente flexible para separar la pieza del molde después de curarla.
Mold Architecture and Design Guidelines
When designing your mold, consider what will print successfully, as well as what will mold successfully. Different mold architectures are used to create different types of geometry:
- One-part mold in vacuum bagging: Used for parts that need one class A side, meaning a glossy finish. It can be positive or negative, depending on which side should be class A. One side is the mold surface, the other side is the vacuum bag surface.
- Two-part mold in compression molding: Used for parts where both sides of the part need to be class A. Both sides are mold surfaces.
- Bladder mold in pressure molding: Used for complex geometry where a vacuum bag or compression mold can not be employed due to the inability of the part to demold. One side is the mold surface, while the other side is the bladder surface.
- Mold pattern to create a negative mold: Used when multiple molds are desired to increase production. Multiple molds can be made from a single pattern.
Add draft angle: Two to three degrees of positive draft angle will facilitate the demolding step and increase the life of the mold, in particular for stiff molds. However, using a pliable 3D printing material such as Tough 1500 Resin can permit you to create parts without a draft and include challenging geometries that could not be demolded from a stiff mold. Set a minimum radius appropriate for your material thickness: this helps the fibers to align on corners while avoiding air inclusion, and to create repeatable quality parts. Avoid steep and close proximity corners, as flowing geometries are easier to work with than boxy, edgy ones.
Set a minimum radius appropriate for your material thickness: This helps the fibers to align on corners while avoiding air inclusion, and to create repeatable quality parts. Avoid steep and close proximity corners, as flowing geometries are easier to work with than boxy, edgy ones.
Add draft angle: Two to three degrees of positive draft angle will facilitate the demolding step and increase the life of the mold, in particular for stiff molds. However, using a pliable 3D printing material such as Tough 1500 Resin can permit you to create parts without a draft and include challenging geometries that could not be demolded from a stiff mold. Set a minimum radius appropriate for your material thickness: this helps the fibers to align on corners while avoiding air inclusion, and to create repeatable quality parts. Avoid steep and close proximity corners, as flowing geometries are easier to work with than boxy, edgy ones.
Set a minimum radius appropriate for your material thickness: This helps the fibers to align on corners while avoiding air inclusion, and to create repeatable quality parts. Avoid steep and close proximity corners, as flowing geometries are easier to work with than boxy, edgy ones.
Other best practices:
- Print at the smallest layer height possible to optimize the resolution and demolding step.
- Avoid supports on molding faces for better surface finish.
- Use a release agent: this is required to enable the demolding process.
- To avoid air inclusion: after stirring and mixing, wait two minutes to have the air settle out of the resin. Reiterate after brushing on the first layer of resin. If small air bubbles remain, it can be polished out and sealed off in post-processing.
Case Study: TU Berlin 3D Prints Carbon Fiber Molds With Tough 1500 Resin
The Formula Student is a yearly engineering design competition in which student teams from around the world build and race formula-style cars. The Formula Student Team TU Berlin (FaSTTUBe) is one of the largest groups; 80 to 90 students have been developing new racing cars every year since 2005.
The Formula Student team at TU Berlin (FasSTTUBe) is building three vehicles for the annual Formula Student competition. With access to nearly the full range of fabrication technologies, they are using 3D printing for three purposes:
- Prototypes: they print prototypes for various parts, such as mountings of the anti-roll bar or stakeholders of the HV Battery.
- Molds to manufacture carbon fiber parts: the team printed a dozen molds to fabricate carbon fiber parts that could not have been made otherwise.
- End-use parts: about 30 parts on the final vehicles are directly 3D printed: from button holders, shifters of the steering wheel, to hoses and sensor connectors of the cooling systems.
In this case study, we’re looking into the details of the molding application they used to fabricate the steering wheel housing and grips in carbon fiber.
Reducing weight is essential in the construction of racing cars. In an effort to lighten the parts, they could have printed hollow steering wheel grips, but it would not be strong enough to bear the grasp of the driver.
Carbon fiber is a great material to lower weight while maintaining or increasing strength. To be able to fabricate the part in carbon fiber this year, Felix Hilken, the Head of Aerodynamics and Carbon Manufacturing, developed a workflow using 3D printed molds for wet lay-up lamination.
1. Design the Mold
The grip was manufactured in two halves subsequently assembled, in order to be able to demold the part. For each half of the grip, Felix designed a two-part mold including features that would be challenging to manufacture without 3D printing, in particular:
- Fine features such as tight internal radii, sweeping surfaces, or varying radii surfaces.
- Round tight edges that could not be demolded from an aluminum mold. A hollow 3D printed mold is flexible enough to demold this type of geometry easily.
- Indents for drilling location because the part is sensitive to positioning.
"Some of the features on here can literally not be done with any other process in an economical way," says Felix. He oriented the part to avoid supports on the molding surfaces so that he did not have to post-process the surface of the prints.
2. Imprime el molde en 3D
The grip was manufactured in two halves subsequently assembled, in order to be able to demold the part. For each half of the grip, Felix designed a two-part mold including features that would be challenging to manufacture without 3D printing, in particular:
- Fine features such as tight internal radii, sweeping surfaces, or varying radii surfaces.
- Round tight edges that could not be demolded from an aluminum mold. A hollow 3D printed mold is flexible enough to demold this type of geometry easily.
- Indents for drilling location because the part is sensitive to positioning.
"Some of the features on here can literally not be done with any other process in an economical way," says Felix. He oriented the part to avoid supports on the molding surfaces so that he did not have to post-process the surface of the prints.
2. Imprime el molde en 3D
The grip was manufactured in two halves subsequently assembled, in order to be able to demold the part. For each half of the grip, Felix designed a two-part mold including features that would be challenging to manufacture without 3D printing, in particular:
- Fine features such as tight internal radii, sweeping surfaces, or varying radii surfaces.
- Round tight edges that could not be demolded from an aluminum mold. A hollow 3D printed mold is flexible enough to demold this type of geometry easily.
- Indents for drilling location because the part is sensitive to positioning.
"Some of the features on here can literally not be done with any other process in an economical way," says Felix. He oriented the part to avoid supports on the molding surfaces so that he did not have to post-process the surface of the prints.
2. Imprime el molde en 3D
The grip was manufactured in two halves subsequently assembled, in order to be able to demold the part. For each half of the grip, Felix designed a two-part mold including features that would be challenging to manufacture without 3D printing, in particular:
- Fine features such as tight internal radii, sweeping surfaces, or varying radii surfaces.
- Round tight edges that could not be demolded from an aluminum mold. A hollow 3D printed mold is flexible enough to demold this type of geometry easily.
- Indents for drilling location because the part is sensitive to positioning.
"Some of the features on here can literally not be done with any other process in an economical way," says Felix. He oriented the part to avoid supports on the molding surfaces so that he did not have to post-process the surface of the prints.
2. Imprime el molde en 3D
The grip was manufactured in two halves subsequently assembled, in order to be able to demold the part. For each half of the grip, Felix designed a two-part mold including features that would be challenging to manufacture without 3D printing, in particular:
- Fine features such as tight internal radii, sweeping surfaces, or varying radii surfaces.
- Round tight edges that could not be demolded from an aluminum mold. A hollow 3D printed mold is flexible enough to demold this type of geometry easily.
- Indents for drilling location because the part is sensitive to positioning.
"Some of the features on here can literally not be done with any other process in an economical way," says Felix. He oriented the part to avoid supports on the molding surfaces so that he did not have to post-process the surface of the prints.
2. Imprime el molde en 3D
The grip was manufactured in two halves subsequently assembled, in order to be able to demold the part. For each half of the grip, Felix designed a two-part mold including features that would be challenging to manufacture without 3D printing, in particular:
- Fine features such as tight internal radii, sweeping surfaces, or varying radii surfaces.
- Round tight edges that could not be demolded from an aluminum mold. A hollow 3D printed mold is flexible enough to demold this type of geometry easily.
- Indents for drilling location because the part is sensitive to positioning.
"Some of the features on here can literally not be done with any other process in an economical way," says Felix. He oriented the part to avoid supports on the molding surfaces so that he did not have to post-process the surface of the prints.
2. Imprime el molde en 3D
The grip was manufactured in two halves subsequently assembled, in order to be able to demold the part. For each half of the grip, Felix designed a two-part mold including features that would be challenging to manufacture without 3D printing, in particular:
- Fine features such as tight internal radii, sweeping surfaces, or varying radii surfaces.
- Round tight edges that could not be demolded from an aluminum mold. A hollow 3D printed mold is flexible enough to demold this type of geometry easily.
- Indents for drilling location because the part is sensitive to positioning.
"Some of the features on here can literally not be done with any other process in an economical way," says Felix. He oriented the part to avoid supports on the molding surfaces so that he did not have to post-process the surface of the prints.
2. Imprime el molde en 3D
The grip was manufactured in two halves subsequently assembled, in order to be able to demold the part. For each half of the grip, Felix designed a two-part mold including features that would be challenging to manufacture without 3D printing, in particular:
- Fine features such as tight internal radii, sweeping surfaces, or varying radii surfaces.
- Round tight edges that could not be demolded from an aluminum mold. A hollow 3D printed mold is flexible enough to demold this type of geometry easily.
- Indents for drilling location because the part is sensitive to positioning.
"Some of the features on here can literally not be done with any other process in an economical way," says Felix. He oriented the part to avoid supports on the molding surfaces so that he did not have to post-process the surface of the prints.
2. Imprime el molde en 3D
The grip was manufactured in two halves subsequently assembled, in order to be able to demold the part. For each half of the grip, Felix designed a two-part mold including features that would be challenging to manufacture without 3D printing, in particular:
- Fine features such as tight internal radii, sweeping surfaces, or varying radii surfaces.
- Round tight edges that could not be demolded from an aluminum mold. A hollow 3D printed mold is flexible enough to demold this type of geometry easily.
- Indents for drilling location because the part is sensitive to positioning.
"Some of the features on here can literally not be done with any other process in an economical way," says Felix. He oriented the part to avoid supports on the molding surfaces so that he did not have to post-process the surface of the prints.
2. Imprime el molde en 3D
The grip was manufactured in two halves subsequently assembled, in order to be able to demold the part. For each half of the grip, Felix designed a two-part mold including features that would be challenging to manufacture without 3D printing, in particular:
- Fine features such as tight internal radii, sweeping surfaces, or varying radii surfaces.
- Round tight edges that could not be demolded from an aluminum mold. A hollow 3D printed mold is flexible enough to demold this type of geometry easily.
- Indents for drilling location because the part is sensitive to positioning.
"Some of the features on here can literally not be done with any other process in an economical way," says Felix. He oriented the part to avoid supports on the molding surfaces so that he did not have to post-process the surface of the prints.
2. Imprime el molde en 3D
The grip was manufactured in two halves subsequently assembled, in order to be able to demold the part. For each half of the grip, Felix designed a two-part mold including features that would be challenging to manufacture without 3D printing, in particular:
- Fine features such as tight internal radii, sweeping surfaces, or varying radii surfaces.
- Round tight edges that could not be demolded from an aluminum mold. A hollow 3D printed mold is flexible enough to demold this type of geometry easily.
- Indents for drilling location because the part is sensitive to positioning.
"Some of the features on here can literally not be done with any other process in an economical way," says Felix. He oriented the part to avoid supports on the molding surfaces so that he did not have to post-process the surface of the prints.
Results
By using carbon fiber, the team reduced the weight of the steering wheel housing from 120g to 21g, and they were able to push the design to geometries that would be extremely difficult to manufacture traditionally. “The great thing about 3D printing is that a complex shape is as easy to manufacture as a simple one, it requires the same amount of work and equipment,” says Felix.
Without 3D printing, the team would have had to outsource the CNC milling of an aluminum mold, which is expensive, has a long lead time, and requires specialized tools. “I would CNC machine the mold, I would need to get specialized tools, and wait to get a slot on the machine. But I could not even do this geometry. In particular some of the small corners. I would need to use a design that doesn't have any screws in it, so the part would not be sensitive to positioning."
From his estimation, one mold printed with Formlabs Tough 1500 Resin could be used to fabricate about ten parts. As this is a manual process, it depends on how meticulous the operator is: the mold can break during the separation process. However, multiple 3D printed molds can be used to increase production. Another solution to extend the lifetime of the mold would be to support it with a metallic generic mold. A 3D Saveprinted insert carries the geometry while a backup metallic mold helps to hold its shape. This could be fabricated with a simple manual milling machine.
| Outsourced CNC Machined Mold | In-House 3D Printed Mold | |
|---|---|---|
| Equipamiento | Carbon fiber, resins, tools, vacuum bag | Carbon fiber, resins, tools, vacuum bag, 3D printer, Tough 1500 Resin |
| Mold Production Time | 4-6 weeks | 2 días |
| Labor Costs | 0 $ | 300 € |
| Costes de material | 0 $ | $10 |
| Total Mold Production Costs | $900 | $310 |
Case Study: Automotive Carbon Fiber Parts for Panoz
DeltaWing Manufacturing creates composite parts for the company Panoz, a designer and manufacturer of exclusive, American-made luxury sports cars. To fabricate carbon fiber components, DeltaWing Manufacturing used to machine a pattern, layup or cast a mold on it, and finish the mold before applying the prepreg process to laminate the carbon fiber part.
In the past years, they started using in-house 3D printed parts as an intermediate step in this process. Panoz needed six units of a carbon fiber fender air duct for a custom racing car. In order to reduce labor and lead time from their traditional mold making technique, the engineers from DeltaWing Manufacturing chose to directly 3D print the mold and implement it in their prepreg process.
The next section describes the procedure they utilized.
Equipment Necessary:
- Formlabs SLA 3D printer with High Temp Resin
- Carbon fiber: 4K, bidimensional pattern
- Mold release: polyvinyl alcohol
- Kapton (polyimide) tape
- High-strength epoxy resin
- Brush and scissors
- Vacuum bag, vacuum pump
1. Design the Mold
The duct was fabricated in two distinct pieces on two different molds in order to facilitate the separation of the final part from the mold, and then subsequently bonded. Each mold was also printed in two pieces and assembled together so that it could fit in the build volume of the Form Series printer — however, this would not be necessary with the larger build volume of the Form 4L printer. The parts were designed for additive manufacturing, following mold design recommendations.
2. Imprime el molde en 3D
The duct was fabricated in two distinct pieces on two different molds in order to facilitate the separation of the final part from the mold, and then subsequently bonded. Each mold was also printed in two pieces and assembled together so that it could fit in the build volume of the Form Series printer — however, this would not be necessary with the larger build volume of the Form 4L printer. The parts were designed for additive manufacturing, following mold design recommendations.
1. Design the Mold
The duct was fabricated in two distinct pieces on two different molds in order to facilitate the separation of the final part from the mold, and then subsequently bonded. Each mold was also printed in two pieces and assembled together so that it could fit in the build volume of the Form Series printer — however, this would not be necessary with the larger build volume of the Form 4L printer. The parts were designed for additive manufacturing, following mold design recommendations.
Results
The team tested six iterations for one mold without observing any significant degradation. We estimate around 10-15 iterations are possible for one mold. As autoclaves are used to apply heat and pressure during curing in the prepreg process, the printed mold can only withstand a few iterations. Therefore, this method is not recommended for high-volume production, but it is a great way to produce short-run batches and mass-customized parts. This enables a wide range of applications such as high-performance sports equipment, customized tooling for aerospace, or personalized prosthetics that are unique to the patients in healthcare.
Impresión 3D en fibra de carbono
Hay una gran demanda de procesos de trabajo que combinen la tenacidad, durabilidad y robustez de las piezas de fibra de carbono tradicionales con la agilidad, las posibilidades geométricas y la repetibilidad de la impresión 3D. Por lo tanto, no es sorprendente que haya muchas empresas de impresión 3D que ofrezcan impresión 3D de fibra de carbono, con los dos procesos actualmente disponibles siendo la impresión con fibras cortadas o fibras continuas.
Gracias al uso de fibras de carbono cortadas, Nylon 11 CF Powder para la impresora 3D industrial de sinterizado
selectivo por láser (SLS) Fuse 1+ 30W, permite a los fabricantes crear piezas tenaces, ligeras y resistentes al calor sin tener que depender de métodos tradicionales de recubrimiento de soldadura o mecanizado.El Nylon 11 CF Powder de Formlabs es tenaz, ligero y resistente al calor, lo que lo hace ideal para aplicaciones automovilísticas, aeroespaciales y de fabricación.
Solicita una pieza de muestra gratuita
Experimenta la calidad de Formlabs de primera mano. Enviaremos una pieza de muestra gratuita a tu lugar de trabajo.
Empieza a trabajar con la fabricación de fibra de carbono
La fabricación de polímero reforzado con fibras es un proceso de trabajo intensivo, complejo, pero aún así emocionante. El uso de moldes y patrones impresos en 3D para fabricar piezas de fibra de carbono permite a las empresas reducir la complejidad del flujo de trabajo, aumentar la flexibilidad y las oportunidades de diseño, y reducir los costes y los plazos de entrega.
Mediante los casos de estudio con la Universidad Técnica de Berlín y DeltaWing Manufacturing, nuestro libro blanco presenta tres procesos de trabajo para aprovechar la impresión 3D en la fabricación de materiales compuestos con la fabricación rápida de moldes y patrones.


